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A Simple Example (1/3)
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// Two simple kernels
void flux(double prev_cell, double next_cell, double &interface);
void integrate(double prev_interface, double next_interface, double &cell);

// Typical parallel implementation (in 1D)
#pragma omp parallel for simd
for (uint32_t itf = first_itf; itf < last_itf; ++itf)
{

flux(cells[itf-1], cells[itf], interfaces[itf]);
}
#pragma omp parallel for simd
for (uint32_t c = first_cell; c < last_cell; ++c)
{

integrate(interfaces[c], interfaces[c+1], cells[c]);
}

n n+1 n+2 n+3

n n+1 n+2 n+3 n+4Interfaces:

Cells:
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A Simple Example (2/3)

3

Data-flow DAG:

3 cell values as input

2 interface values as intermediates

1 cell value as output

n n+1 n+2 n+3

n n+1 n+2 n+3 n+4Interfaces:

Cells:
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A Simple Example (3/3)
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// Two simple kernels
void flux(double prev_cell, double next_cell, double &interface);
void integrate(double prev_interface, double next_interface, double &cell);

// Rolling update implementation (in 1D)
#pragma omp parallel for
for each tile (first_cell, last_cell)
{

double tmp_itf[2];
flux(cells[first_cell-1], cells[first_cell], tmp_itf[0]); // Prologue
for (uint32_t c = first_cell; c < last_cell; ++c)         // Steady-state
{

flux(cells[c], cells[c+1], tmp_itf[1]);
integrate(tmp_itf[0], tmp_itf[1], cells[c]);
tmp_itf[0] = tmp_itf[1];

}
}

n n+1 n+2 n+3

n n+1 n+2 n+3 n+4Interfaces:

Cells:

This forward dependency prevents auto-vectorization.



© 2016 Intel Corporation

A Complicated Example – CEA’s Hydro2D
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 Implements 9 “parallel kernels” as:

for all cells in a slab:
function();

synchronize

make_boundary();
constoprim();
equation_of_state();
slope();
trace();
qleftright();
riemann();
cmpflx();
updateConservativeVars();
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Why a DSL/Code Generator?
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Data dependency analysis is error-prone and time-consuming.

 Needs to be repeated each time application functionality is changed.

 Application functionality may change many times during optimization studies.

 Dependency analysis for proxy applications won’t match the legacy application.

Rolling update code follows a pattern => copy-paste errors.

 Very easy to get a temporary index, or the rolling buffer size, wrong.

Rolling update loops have very real data dependencies.

 Compiler cannot vectorize the code (at all).

 Explicit vectorization requires intrinsics, SIMD classes or ugly OpenMP code.



© 2016 Intel Corporation

Input Parameters
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 Kernel description(s):

integrate:
declaration: integrate(flux_t lf, flux_t rf, cell_t &ic);
inputs: |

lf : flux(q?[j?][i?])
rf : flux(q?[j?][i?+1])

outputs: |
ic : integrated(q?[j?][i?])

 Axiom(s):

double cell[j?][i?]

 Goal(s):

integrated(cell[j][i]) => double cell[j][i]

Kernels are elemental functions 
representing production rules.
“?” can be substituted.

Axioms exist before any kernels.
Infinite extent assumed.

Inference works backward from 
goals to compute specified index.



© 2016 Intel Corporation

Stage 1: Inference
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 Start at a goal (e.g. i_cell[j][i]).

 Repeatedly apply rules and 
substitutions until we reach:

‒ An axiom (e.g. d_cell[j][i]); or

‒ A node already in the DAG.

 We have prefixed function names to 
ensure unique variable names.
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Stage 2: Loop Nest Optimizations
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 Serves two purposes:

1. Identifies functions with a spatial relationship and fuses them; and

2. Aggressively fuses loop nests (where safe to do so).

 In many cases, it is safe to fuse all loops – only “concavity” prevents it:

#pragma omp parallel for simd reduction(+:sum)
for (uint32_t i = 0; i < N; ++i)
{

sum += f(input[i]);
}
#pragma omp parallel for simd
for (uint32_t i = 0; i < N; ++i)
{

output[i] = g(sum);
}

Using the reduced value requires all 
iterations of the first loop to be executed.
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Stage 3: Rolling Analysis
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 All spatial references to a variable can be 
visualized as (another) “reuse” DAG.

‒ Vertices = Spatial references

‒ Edges = Child node is “reachable” from 
parent node, using given loop order and 
stride

 Vertices with input degree of zero are the 
first time that point in the iteration space 
has been visited for this variable; others 
can be loaded from intermediate storage.

2D Laplace, Stride 1

2D Laplace, Stride 2
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Stage 4: Code Generation
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 For each loop nest:

‒ Open loop nest.

‒ Generate code for children (other loop nests and/or kernel calls).

‒ Close loop nest.

 For each variable:

‒ Map from global to temporary (e.g. flux[j][i] => tmp_flux[i-istart])

 For vectorization:

‒ “#pragma omp simd” if loop has no dependencies; otherwise

‒ Strip-mine (and interchange, if necessary) with intrinsic function to rotate buffers
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Case Study: CEA’s Hydro2D
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Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, 
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http://www.intel.com/performance
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Generalizing to OpenMP*
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 Why are we interested in language extensions?

‒ Our YAML framework is ugly and not user-friendly.

‒ User code already contains information that must be re-specified in our framework
(e.g. loop bounds, boundary conditions, program order, variable names)

‒ Adoption rate of language extensions appears much higher than that of frameworks
(e.g. OpenMP SIMD extensions vs Threading Building Blocks)

 We propose to extend OpenMP 4.5 task syntax to specify dependencies 
between iterations of different loops.
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Proposed Language Extensions – Draft
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#pragma omp pipeline \

depend(inout:cell) intermediate(flux_x) \

iterators(j:j_itf,j_cell,i:i_itf,i_cell)

{

#pragma omp pipeline block \

depend(inout:cell:*,*)

initialize_boundary_conditions(cell);

#pragma omp pipeline loop simd collapse(2) \

depend(in:cell:j,i-1) depend(in:cell:j,i) depend(out:flux_x:j,i)

for (int j_itf = jstart; j_itf < jend; ++j_itf)

{

for (int i_itf = istart; i_itf < iend+1; ++i_itf)

{

flux(cell[j_itf][i_itf-1], cell[j_itf][i_itf], flux_x[j_itf][i_itf]);

}

}

#pragma omp pipeline loop simd collapse(2) reduction(max:maxCell[j]) \

depend(in:flux_x:j,i) depend(in:flux_x:j,i+1) depend(out:cell:j,i)

for (int j_cell = jstart; j_itf < jend; ++j_itf)

{

for (int i_cell = istart; i_itf < iend; ++i_itf)

{

integrate(flux_x[j_cell][i_cell], flux_x[j_cell][i_cell+1],

cell[j_cell][i_cell]);

maxCell[j_cell] = max(maxCell[j_cell], cell[j_cell][i_cell]);

}

}

}

pipeline
A region containing one or more pipeline stages.

pipeline loop/block
Marks a loop or structured block as a pipeline stage.

intermediate(list)
Declares one or more storage locations used only to 
pass data between pipeline stages.

depend(dependence-type : list : vec)
Enforce constraints on the scheduling of loop 
iterations in different stages of the same pipeline 
region.

New/extended keywords highlighted in red.



© 2016 Intel Corporation

Summary
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 Produced a prototype analysis + code generation tool for “rolling updates”.

 Impressive performance results for real-life benchmark.

 Future work:

‒ Optimization heuristics (e.g. kernel fusion, redundant compute, halo size)

‒ Compiler/language integration

 If your code matches the following criteria, please e-mail us (or talk to me):

‒ Multiple parallel/vector loops over a single domain.

‒ Local, known (i.e. structured) dependencies between domain elements.
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